Narrow your search

Library

ULiège (9)

FARO (7)

KU Leuven (7)

LUCA School of Arts (7)

Odisee (7)

Thomas More Kempen (7)

Thomas More Mechelen (7)

UCLL (7)

ULB (7)

VIVES (7)

More...

Resource type

book (21)

dissertation (2)


Language

English (23)


Year
From To Submit

2022 (6)

2021 (6)

2020 (9)

2019 (2)

Listing 1 - 10 of 23 << page
of 3
>>
Sort by

Dissertation
Master thesis : Study of a Cubesat dual band infrared imager for hydric stress observation from space
Authors: --- --- --- ---
Year: 2019 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

CubeSats are one of the main projects for the present and future in space, specially in academic environments. Due to their low price, these nanosatellite are the perfect means for students to get involved in space missions and develop satellites from scratch. This is the case of OUTFI-Next (Orbital Utility For Thermal Imaging), the new CubeSat promoted by the University of Liege and the Centre Spatial de Liège.&#13;&#13;After the success of OUFTI-1 (Orbital Utility For Telecommunication Innovation) which was launched in 2016 with the goal of providing support with D-STAR communication and the widely advanced OUFTI-2, which is expected to outperform OUFTI-1 characteristics, OUFTI-Next was conceived. The objective of this 3U CubeSat (30cm x 10cm x 10cm) is to provide a smart irrigation strategy of agricultural fields around the world. This will be carried out by measuring hydric stresses in crops, detecting lack of water in the plants by monitoring the leaf surface temperature with an infrared camera.&#13;&#13;Now, in its third year of development, it has been thought about converting the demonstrator into a dual-band imager, working in Middle Wave Infra-Red (MWIR) and Long Wave Infra-Red (LWIR). The purpose of this document is to report the feasibility of this concept. To do so, the radiometric budget of the satellite in both bands, MWIR and LWIR, will be analyzed, as well as the Signal to Noise Ratio, considering the optics and the different types of detectors available.


Dissertation
Master thesis : Multi-band IR sensor for Earth Observation
Authors: --- --- ---
Year: 2019 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

A new CubeSat is in development by students and professors of the University of Liège and the Centre Spatial de Liège. The CubeSat OUFTI-NEXT will measure the hydric stress in crop fields in order to enhance the management efficiency of the water resources for agriculture. This CubeSat incorporates a thermal imager to capture the electromagnetic radiation of the infrared band. In this project, it is analysed the performance of the different infrared detectors that can be used within the CubeSat optical instrument. &#13;&#13;There are a few examples of CubeSat missions observing in the Mid-Wave Infrared Band or in the Long-Wave Infrared band. However, any of these missions can observe in both bands at the same time. This Master Thesis describes the feasibility of an optical instrument for a CubeSat observing in both bands with the use of a single detector. With this aim, the performance of the two main groups of infrared detectors, photodetectors and thermal detectors, is measured in terms of temperature resolution and signal-to-noise ratio in the space environment. These computations are carried on with the model of equations developed in this Master Thesis.


Book
Engineering Metamaterials
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

A couple of decades have passed since the advent of electromagnetic metamaterials. Although the research on artificial microwave materials dates back to the middle of the 20th century, the most prominent development in the electromagnetics of artificial media has happened in the new millennium. In the last decade, the electromagnetics of one-, two-, and three-dimensional metamaterials acquired robust characterization and design tools. Novel fabrication techniques have been developed. Many exotic effects involving metamaterials and metasurfaces, which initially belonged in a scientist’s lab, are now well understood by practicing engineers. Therefore, it is the right time for the metamaterial concepts to become a designer’s tools of choice in the landscape of electronics, microwaves, and photonics. Answering such a demand, the book “Engineering Metamaterials” focuses on the theory and applications of electromagnetic metamaterials, metasurfaces, and metamaterial transmission lines as the building blocks of present-day and future electronic, photonic, and microwave devices.


Book
Engineering Metamaterials
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

A couple of decades have passed since the advent of electromagnetic metamaterials. Although the research on artificial microwave materials dates back to the middle of the 20th century, the most prominent development in the electromagnetics of artificial media has happened in the new millennium. In the last decade, the electromagnetics of one-, two-, and three-dimensional metamaterials acquired robust characterization and design tools. Novel fabrication techniques have been developed. Many exotic effects involving metamaterials and metasurfaces, which initially belonged in a scientist’s lab, are now well understood by practicing engineers. Therefore, it is the right time for the metamaterial concepts to become a designer’s tools of choice in the landscape of electronics, microwaves, and photonics. Answering such a demand, the book “Engineering Metamaterials” focuses on the theory and applications of electromagnetic metamaterials, metasurfaces, and metamaterial transmission lines as the building blocks of present-day and future electronic, photonic, and microwave devices.


Book
Engineering Metamaterials
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

A couple of decades have passed since the advent of electromagnetic metamaterials. Although the research on artificial microwave materials dates back to the middle of the 20th century, the most prominent development in the electromagnetics of artificial media has happened in the new millennium. In the last decade, the electromagnetics of one-, two-, and three-dimensional metamaterials acquired robust characterization and design tools. Novel fabrication techniques have been developed. Many exotic effects involving metamaterials and metasurfaces, which initially belonged in a scientist’s lab, are now well understood by practicing engineers. Therefore, it is the right time for the metamaterial concepts to become a designer’s tools of choice in the landscape of electronics, microwaves, and photonics. Answering such a demand, the book “Engineering Metamaterials” focuses on the theory and applications of electromagnetic metamaterials, metasurfaces, and metamaterial transmission lines as the building blocks of present-day and future electronic, photonic, and microwave devices.


Book
Antennas and Propagation
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue gathers topics of utmost interest in the field of antennas and propagation, such as: new directions and challenges in antenna design and propagation; innovative antenna technologies for space applications; metamaterial, metasurface and other periodic structures; antennas for 5G; electromagnetic field measurements and remote sensing applications.

Keywords

Technology: general issues --- Energy industries & utilities --- 5G mobile communication --- Sub-6-GHz --- compact antenna --- channel selection --- channel filters --- metamaterials --- antenna radiation measurements --- common mode current --- distance averaging --- multipath site --- small antenna --- loop probe --- log-periodic dipole array --- wideband antenna --- VHF --- cross polarized --- array element --- radio detection --- cosmic rays --- ultra-wide band antennas --- energy-based antenna descriptors --- pulsed sources --- direction finding --- dual-band dipole --- CRLH antenna --- dual-band balun --- CRLH balun --- wireless communication --- textile antenna --- wearable antenna --- SAR --- flexible antenna --- low-profile antenna --- sensor network --- active test --- UWB --- 802.15.4z --- timestamp detection --- ranging --- multipath --- frequency fading --- dye-sensitized solar cells --- integration --- antenna array --- solar antenna --- multibandoperation --- slotted antenna --- microwave --- millimeter-wave band --- WLAN --- 5G --- frequency multiplexed --- IoT --- millimeter-waves --- multi-band --- n-band antenna --- antenna as a sensor --- meander line antenna --- periodic structure --- millimeter-wave antenna --- frequency scanning antenna --- leaky-wave antenna --- planar sensor --- non-invasive --- Split Ring Resonator --- dielectrics measurements --- RF absorbing materials --- higher symmetries --- glide symmetry --- periodic structures --- mode matching --- dispersion analysis --- radar cross section (RCS) measurement --- near-field to far-field transformation (NFFFT) --- spherical wave expansion (SWE) --- anisotropy --- dielectric constant --- material characterization --- planar resonators --- substrate bending --- textile fabrics --- wearable radiators --- reflectarray antennas --- multibeam antennas --- dual band reflectarrays --- communication satellites --- Ka-band --- near-field antenna effect --- radar calibration --- MIMO radar --- turntable radar --- UWB radar --- radar system --- scattering imaging --- inverse scattering problem --- radar resolution --- photomixer --- terahertz source --- two dimensional photonic crystal --- frequency selective surface superstrate --- terahertz antenna --- dielectric resonator antenna --- biomedical devices --- wireless communication link --- near-field region --- impedance matching characteristics --- horizontal polarization --- UAV ground station --- Omni-directional --- wireless power transmission (WPT) --- energy harvesting --- rectenna --- wireless sensors --- n/a


Book
Antennas and Propagation
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue gathers topics of utmost interest in the field of antennas and propagation, such as: new directions and challenges in antenna design and propagation; innovative antenna technologies for space applications; metamaterial, metasurface and other periodic structures; antennas for 5G; electromagnetic field measurements and remote sensing applications.

Keywords

Technology: general issues --- Energy industries & utilities --- 5G mobile communication --- Sub-6-GHz --- compact antenna --- channel selection --- channel filters --- metamaterials --- antenna radiation measurements --- common mode current --- distance averaging --- multipath site --- small antenna --- loop probe --- log-periodic dipole array --- wideband antenna --- VHF --- cross polarized --- array element --- radio detection --- cosmic rays --- ultra-wide band antennas --- energy-based antenna descriptors --- pulsed sources --- direction finding --- dual-band dipole --- CRLH antenna --- dual-band balun --- CRLH balun --- wireless communication --- textile antenna --- wearable antenna --- SAR --- flexible antenna --- low-profile antenna --- sensor network --- active test --- UWB --- 802.15.4z --- timestamp detection --- ranging --- multipath --- frequency fading --- dye-sensitized solar cells --- integration --- antenna array --- solar antenna --- multibandoperation --- slotted antenna --- microwave --- millimeter-wave band --- WLAN --- 5G --- frequency multiplexed --- IoT --- millimeter-waves --- multi-band --- n-band antenna --- antenna as a sensor --- meander line antenna --- periodic structure --- millimeter-wave antenna --- frequency scanning antenna --- leaky-wave antenna --- planar sensor --- non-invasive --- Split Ring Resonator --- dielectrics measurements --- RF absorbing materials --- higher symmetries --- glide symmetry --- periodic structures --- mode matching --- dispersion analysis --- radar cross section (RCS) measurement --- near-field to far-field transformation (NFFFT) --- spherical wave expansion (SWE) --- anisotropy --- dielectric constant --- material characterization --- planar resonators --- substrate bending --- textile fabrics --- wearable radiators --- reflectarray antennas --- multibeam antennas --- dual band reflectarrays --- communication satellites --- Ka-band --- near-field antenna effect --- radar calibration --- MIMO radar --- turntable radar --- UWB radar --- radar system --- scattering imaging --- inverse scattering problem --- radar resolution --- photomixer --- terahertz source --- two dimensional photonic crystal --- frequency selective surface superstrate --- terahertz antenna --- dielectric resonator antenna --- biomedical devices --- wireless communication link --- near-field region --- impedance matching characteristics --- horizontal polarization --- UAV ground station --- Omni-directional --- wireless power transmission (WPT) --- energy harvesting --- rectenna --- wireless sensors --- n/a


Book
Antennas and Propagation
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue gathers topics of utmost interest in the field of antennas and propagation, such as: new directions and challenges in antenna design and propagation; innovative antenna technologies for space applications; metamaterial, metasurface and other periodic structures; antennas for 5G; electromagnetic field measurements and remote sensing applications.

Keywords

5G mobile communication --- Sub-6-GHz --- compact antenna --- channel selection --- channel filters --- metamaterials --- antenna radiation measurements --- common mode current --- distance averaging --- multipath site --- small antenna --- loop probe --- log-periodic dipole array --- wideband antenna --- VHF --- cross polarized --- array element --- radio detection --- cosmic rays --- ultra-wide band antennas --- energy-based antenna descriptors --- pulsed sources --- direction finding --- dual-band dipole --- CRLH antenna --- dual-band balun --- CRLH balun --- wireless communication --- textile antenna --- wearable antenna --- SAR --- flexible antenna --- low-profile antenna --- sensor network --- active test --- UWB --- 802.15.4z --- timestamp detection --- ranging --- multipath --- frequency fading --- dye-sensitized solar cells --- integration --- antenna array --- solar antenna --- multibandoperation --- slotted antenna --- microwave --- millimeter-wave band --- WLAN --- 5G --- frequency multiplexed --- IoT --- millimeter-waves --- multi-band --- n-band antenna --- antenna as a sensor --- meander line antenna --- periodic structure --- millimeter-wave antenna --- frequency scanning antenna --- leaky-wave antenna --- planar sensor --- non-invasive --- Split Ring Resonator --- dielectrics measurements --- RF absorbing materials --- higher symmetries --- glide symmetry --- periodic structures --- mode matching --- dispersion analysis --- radar cross section (RCS) measurement --- near-field to far-field transformation (NFFFT) --- spherical wave expansion (SWE) --- anisotropy --- dielectric constant --- material characterization --- planar resonators --- substrate bending --- textile fabrics --- wearable radiators --- reflectarray antennas --- multibeam antennas --- dual band reflectarrays --- communication satellites --- Ka-band --- near-field antenna effect --- radar calibration --- MIMO radar --- turntable radar --- UWB radar --- radar system --- scattering imaging --- inverse scattering problem --- radar resolution --- photomixer --- terahertz source --- two dimensional photonic crystal --- frequency selective surface superstrate --- terahertz antenna --- dielectric resonator antenna --- biomedical devices --- wireless communication link --- near-field region --- impedance matching characteristics --- horizontal polarization --- UAV ground station --- Omni-directional --- wireless power transmission (WPT) --- energy harvesting --- rectenna --- wireless sensors --- n/a


Book
Recent Technical Developments in Energy-Efficient 5G Mobile Cells
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book addresses the true innovation in engineering design that may be promoted by blending together models and methodologies from different disciplines, and, in this book, the target was exactly to follow this approach to deliver a new disruptive architecture to deliver these next-generation mobile small cell technologies. According to this design philosophy, the work within this book resides in the intersection of engineering paradigms that includes “cooperation”, “network coding”, and “smart energy-aware frontends”. These technologies will not only be considered as individual building blocks, but re-engineered according to an inter-design approach resulting in the enabler for energy efficient femtocell-like services on the move. The book aims to narrow the gap between the current networking technologies and the foreseen requirements that are targeted at the future development of the 5G mobile and wireless communications networks in terms of the higher networking capacity, the ability to support more users, the lower cost per bit, the enhanced energy efficiency, and adaptability to new services and devices (for example, smart cities, and the Internet of things (IoT)).

Keywords

History of engineering & technology --- microstrip --- tuneable filter --- microwave filter --- 5G --- MEMSs --- varactor --- 4G --- CR --- MIMO --- reconfigurable antenna --- switch --- UWB --- WiMAX --- WLAN --- wireless communications --- cooperative NOMA --- multi-points DF relaying nodes --- half-duplex --- full-duplex --- Rayleigh fading channels --- Nakagami-m fading channels --- energy harvesting --- non-orthogonal multiple access --- multiple antenna --- transmit antenna selection --- outage probability --- pattern reconfigurable --- patch antenna --- s-parameters --- frequency reconfigurable --- dual-band Doherty power amplifier --- LTE-advanced --- high-efficiency --- phase offset lines --- impedance inverter network --- phase compensation network --- High power amplifiers --- high efficiency --- Doherty power amplifier --- GaN-HEMT --- small cell --- maximum transmit power --- UE --- open-loop power control --- interference --- ergodic capacity --- non-linear energy harvesting --- NOMA --- monopole antenna --- S-parameters --- 5G, 4/4.5G --- LTE --- ISM --- WiFi --- 5G antenna --- slot antenna --- mobile terminal antenna --- MIMO antenna --- medical applications --- miniaturized antenna --- arc-shaped --- dual-band --- chiral --- Tellegen --- multilayer CPW structure --- dispersion characteristics --- full-GEMT --- Muller’s method --- complex propagation constant --- acceleration procedure --- ISM 2.4 GHz --- isolation --- envelope correlation coefficient (ECC) --- channel capacity loss (CCL) --- 5G technology --- CPW-fed antenna --- diversity antenna --- future smartphones --- MIMO systems --- n/a --- Muller's method


Book
Recent Technical Developments in Energy-Efficient 5G Mobile Cells
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book addresses the true innovation in engineering design that may be promoted by blending together models and methodologies from different disciplines, and, in this book, the target was exactly to follow this approach to deliver a new disruptive architecture to deliver these next-generation mobile small cell technologies. According to this design philosophy, the work within this book resides in the intersection of engineering paradigms that includes “cooperation”, “network coding”, and “smart energy-aware frontends”. These technologies will not only be considered as individual building blocks, but re-engineered according to an inter-design approach resulting in the enabler for energy efficient femtocell-like services on the move. The book aims to narrow the gap between the current networking technologies and the foreseen requirements that are targeted at the future development of the 5G mobile and wireless communications networks in terms of the higher networking capacity, the ability to support more users, the lower cost per bit, the enhanced energy efficiency, and adaptability to new services and devices (for example, smart cities, and the Internet of things (IoT)).

Keywords

History of engineering & technology --- microstrip --- tuneable filter --- microwave filter --- 5G --- MEMSs --- varactor --- 4G --- CR --- MIMO --- reconfigurable antenna --- switch --- UWB --- WiMAX --- WLAN --- wireless communications --- cooperative NOMA --- multi-points DF relaying nodes --- half-duplex --- full-duplex --- Rayleigh fading channels --- Nakagami-m fading channels --- energy harvesting --- non-orthogonal multiple access --- multiple antenna --- transmit antenna selection --- outage probability --- pattern reconfigurable --- patch antenna --- s-parameters --- frequency reconfigurable --- dual-band Doherty power amplifier --- LTE-advanced --- high-efficiency --- phase offset lines --- impedance inverter network --- phase compensation network --- High power amplifiers --- high efficiency --- Doherty power amplifier --- GaN-HEMT --- small cell --- maximum transmit power --- UE --- open-loop power control --- interference --- ergodic capacity --- non-linear energy harvesting --- NOMA --- monopole antenna --- S-parameters --- 5G, 4/4.5G --- LTE --- ISM --- WiFi --- 5G antenna --- slot antenna --- mobile terminal antenna --- MIMO antenna --- medical applications --- miniaturized antenna --- arc-shaped --- dual-band --- chiral --- Tellegen --- multilayer CPW structure --- dispersion characteristics --- full-GEMT --- Muller’s method --- complex propagation constant --- acceleration procedure --- ISM 2.4 GHz --- isolation --- envelope correlation coefficient (ECC) --- channel capacity loss (CCL) --- 5G technology --- CPW-fed antenna --- diversity antenna --- future smartphones --- MIMO systems --- n/a --- Muller's method

Listing 1 - 10 of 23 << page
of 3
>>
Sort by